MQT 2022

Nanocavity QED with molecular vibrations in the mid-infrared

Mauricio Arias Universidad de Santiago de Chile

J. F. Triana (1), M. Arias (2), J. Nishida (3), E. A. Muller (4), R. Wilcken (3), S. C. Johnson (3), A. Delgado (2,5), M. B. Raschke (3), and F. Herrera (1,5)

(1) Department of Physics, Universidad de Santiago de Chile, Av. Victor Jara, 3493 Santiago, Chile

(2) Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile

(3) Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309, USA

(4) Department of Chemistry, Colgate University, Hamilton, New York 13346, USA

(5) ANID-Millennium Institute for Research in Optics, Concepción, Chile

We show a versatile semi-empirical quantum optics approach to describe light-matter interaction in a system driven by mid-IR femtosecond laser pulses. This model is not limited to describe observable dynamics of the coupled system but also provides physical insight for the implementation of coherent phase rotations and anharmonic intensity-dependent phase shifts, suggesting novel applications in the development of weak and strongly coupled infrared nanophotonics hardware for quantum control and quantum information processing [1].

alt text

Figure 1. Power-dependent phase rotation of the vibrational coherence. (a) Schematic picture of coherently scattered fields in molecule-coupled resonators. (b) Evolution of the collective coherence. (c) Nonlinear phase as a function of the molecule number N, obtained from exact solutions of the quantum master equation. (d) Level scheme. (e) Imaginary part of the FID signal in the frequency domain for anharmonic oscillators. (f) Nonlinear phase predicted by the nonlinear chirping model.

[1] J. F. Triana, M. Arias, J. Nishida, E. A. Muller, R. Wilcken, S. C. Johnson, A. Delgado, M. B. Raschke, and F. Herrera, The Journal of Chemical Physics 156, 124110 (2022), https://doi.org/10.1063/5.0075894.